
HYPERBOLIC MANIFOLDS AND FIBRATIONS

MATTEO MIGLIORINI

Abstract. In these lectures, we will study the interplay between hyperbolic mani&
folds and fibrations (i.e. fibre bundles) over the circle. We will see how on one hand
fibering for a hyperbolic manifold is a very weird phenomenon, while on the other
hand it is something very common, at least in dimension 3.

Indeed, by a theorem of Agol and Wise, all 3&manifolds virtually fibre over
the circle. In higher dimensions the situation is much more mysterious, and the
problem is that we lack all the tools we have available in dimension 3 to understand
hyperbolic manifolds. The aim of these lectures is to introduce some combinatorial
tools that allow to construct hyperbolic manifolds 𝑀  equipped with a map 𝑓:  𝑀 →
𝑆1 that we are able to study.

We start by giving an overview of the world of hyperbolic manifolds, with a
particular focus of their relationship with fibrations. We will see how the existence
of a hyperbolic manifold of dimension 𝑛 > 3 implies the existence of a hyperbolic
group 𝐺 with a “weird” subgroup 𝐻, i.e. that is of finite type but not hyperbolic.

Then we introduce Bestvina&Brady Morse theory, which is a piecewise&linear
analogue of the more famous smooth version. This was originally introduced to
study the finiteness properties of the kernel of certain epimorphisms 𝜑:  𝐺 → ℤ; it
can be seen as an algebraic analogue of fibrations.

In the appropriate setting one may promote a Bestvina&Brady Brady Morse
function to a smooth one. So the problem of constructing a fibration can be reduced
to an entirely combinatoric one.

Therefore we introduce Coxeter polytopes, that one can use to construct
hyperbolic manifolds equipped with a cell complex structure. Using these, we can
construct many different Bestvina&Brady Morse functions that we can investigate
with some combinatorial techniques, introduced by Jankiewicz, Norin, and Wise; if
some conditions are satisfied, the smoothing will produce a fibration.

1. Lecture 1

1.1. Introduction.

In these lecture series we are going to study two properties of manifolds: the first
is admitting a hyperbolic Riemannian metric, and the second one is fibering over the
circle. On one hand, these two properties seem to be antithetical: we will see that in
a hyperbolic manifold the fibers of a fibration are necessarily very complicated and
distorted with respect to the metric; this would suggest that hyperbolic manifolds
are likely not to fiber.

On the other hand, in dimension 3 virtually all manifold fiber, while in higher
dimensions little is known; this is because there are few tools to construct hyperbolic
manifolds and study their topology in dimension > 3. Our objective is to introduce
one of these tools, that involves hyperbolic polytopes and a discrete version of
Morse theory.

1.2. Fibrations.

Definition 1.1 .  Let 𝑀  be a compact manifold with possibly empty boundary. A
fibration over the circle is a fibre bundle 𝑓:  𝑀 → 𝑆1, where each fibre is a properly
embedded hypersurface.
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All our fibrations will have the circle as base space, so we will just say fibration, or
that the manifold fibers.

Every manifold that fibers over the circle can be fully described by giving the
fibre and the so called monodromy, as follows.

Definition 1.2 .  Let 𝐹  be a manifold, and 𝜑:  𝐹 → 𝐹  be a self&diffeomorphism.
The mapping torus 𝐹 ⋊𝜑 𝑆1 is defined as

𝐹 ⋊𝜑 𝑆1 ≔ M × [0, 1]⧸ (𝑥, 1) ∼ (𝜑(𝑥), 0)

Lemma 1.3 .  Suppose that 𝜑, 𝜓:  𝐹 → 𝐹  are isotopic. Then 𝐹 ⋊𝜑 𝑆1 ≅ 𝐹 ⋊𝜓 𝑆1.

Proof :  Let 𝐻:  𝐹 × [0, 1] → 𝐹  be an isotopy between id and 𝜓−1 ∘ 𝜑. Then
(𝑥, 𝑡) ↦ (𝐻(𝑥, 𝑡), 𝑡)

is the diffeomorphism. □

The reason behind this notation is that the fundamental group of a mapping torus
is 𝜋1(𝐹) ⋊𝜑∗

ℤ.

Lemma 1.4 .  Suppose that 𝑀 fibers over the circle. Then 𝜒(𝑀) = 𝜒(𝜕𝑀) = 0.

Proof :  Assume that 𝑀  is without boundary, and fix any Riemannian metric on
𝑀 . Then grad 𝑓 is a nowhere vanishing vector field, so 𝜒(𝑀) = 0.

If 𝑀  has boundary, the conclusion follows by noting that both 𝜕𝑀  and the
double 𝐷𝑀  of 𝑀  also fiber over the circle, and that 𝜒(𝐷𝑀) = 2𝜒(𝑀) − 𝜒(𝜕𝑀).
□

One can also construct a fibration by means of a 1&form.

Proposition 1.5 .  Let 𝑀 be compact manifold, and suppose that 𝛼 is a nowhere
vanishing closed 1-form. Assume also that its restriction to the boundary is never
vanishing. Then 𝑀 fibers over the circle.

Proof :  We only prove the case where 𝑀  has no boundary.

Up to a small perturbation, we may assume that 𝛼 represents an element in
𝐻1(𝑀; ℚ). There exists 𝑛 ∈ ℕ such that 𝑛𝛼 represents an element in 𝐻1(𝑀; ℤ):
now integrating this form yields a map 𝑀 → ℝ/ℤ that has no critical points. By
using Morse theory, one can conclude that the fibers are all diffeomorphic, so this
yields a fiber bundle. □

1.3. The hyperbolic space.

We recall the definition of the hyperbolic space ℍ𝑛, along with a few properties.

Consider ℝ𝑛+1 equipped with the Lorentzian metric
⟨𝑥, 𝑦⟩ = 𝑥1𝑦1 + … + 𝑥𝑛𝑦𝑛 − 𝑥𝑛+1𝑦𝑛+1.

The hyperbolic space is defined as

ℍ𝑛 = {𝑥 ∈ ℝ𝑛+1 : ⟨𝑥, 𝑥⟩ = −1, 𝑥𝑛+1 > 0}

The restriction of the scalar product to the tangent space of a point in ℍ𝑛 yields
a positive definite bilinear form, so it defines a Riemannian metric.

The above model is inconvenient because we need one extra dimension. To draw
pictures, there are some alternatives:
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• The Poincaré disk is obtained by projecting on {𝑥𝑛+1 = 0} through
(0, …, 0, −1). This model is conformal, meaning that angles are preserved.
Geodesic lines are sent to lines passing through the origin and circles
orthogonal to the boundary.

• The half&space model {𝑥𝑛 > 0} is obtained by inverting the Poincaré disk
at (0, …, 0, −1). It is also conformal, and geodesic are vertical lines and
half&circles orthogonal to the boundary.

• The Klein disk is obtained by projecting on {𝑥𝑛+1 = 1} through the origin.
It is not conformal, but geodesics are Euclidean lines.

1.4. Hyperbolic manifolds.

All Riemannian manifolds are assumed to be complete, orientable, with finite
volume unless otherwise stated.

Definition 1.6 (Model manifold).  A Riemannian manifold is said to be spherical,
flat, hyperbolic if it is locally isometric to 𝑆𝑛, 𝔼𝑛, ℍ𝑛 respectively.

Definition 1.7 .  A group (resp. manifold) is said to be virtually 𝒫 if it has a finite
index subgroup (resp. cover) that is 𝒫.

Theorem 1.8 (Killing&Hopf).  The universal cover of a spherical, flat, or hyperbolic
manifold is respectively 𝑆𝑛, 𝔼𝑛, or ℍ𝑛.

In particular, all these manifold are quotient of their model spaces by a discrete
group of isometries that acts freely and properly discontinuously.

Corollary 1.9 .  All spherical manifolds are compact and virtually a sphere.

Finite volume flat manifolds are also not that many.

Theorem 1.10 (Bieberbach, 1912).  All finite-volume flat manifolds are virtually
an 𝑛-torus.

The world of hyperbolic manifolds is far richer. First of all, there exist non&compact
finite volume hyperbolic manifolds. They admit some ends, diffeomorphic to 𝑁 ×
[0, ∞), where 𝑁  is a flat manifold. Those ends are called cusps.

In particular, every finite&volume hyperbolic manifold is diffeomorphic to the
interior of a compact manifold with flat boundary components. When we say that
a non&compact hyperbolic manifold 𝑀  fibers, we mean that the compactification
𝑀  fibers.

Remark 1.11 .  Finite&volume and closed hyperbolic manifolds behave more or less in
the same way. For sake of simplicity, most of the theorems will be stated and proved
in the closed case, but they can always be generalized to the finite&volume case.

On the contrary, exhibiting example is much easier if we allow cusps.

All finite&volume hyperbolic manifolds are the quotient of ℍ𝑛 by a discrete subgroup
of Isom(ℍ𝑛) = 𝑂(𝑛, 1) that acts freely and properly discontinuously.

Proposition 1.12 .  A subgroup Γ < Isom(ℍ𝑛) acts properly discontinuously if and
only if it is discrete.

Proposition 1.13 .  A discrete subgroup Γ < Isom(ℍ𝑛) acts freely if and only if it
is torsion-free.
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Proposition 1.14 (Selberg’s Lemma).  Every finitely generated discrete subgroup
of Isom(ℍ𝑛) is virtually torsion-free.

1.5. Isometries of ℍ𝑛.

We would like to understand better how isomeries act on ℍ𝑛. We follow [Mar16],
Chapters 4–5.

The hyperbolic space, thought as the Poincaré disk, has a natural boundary 𝜕ℍ𝑛.
Every isometry of ℍ𝑛 extends uniquely to a homeomorphism of ℍ𝑛 = ℍ𝑛 ∪ 𝜕ℍ𝑛.

Isometries of ℍ𝑛 are all of one of the following three types.

• elliptic, if they fix at least one point in ℍ𝑛;
• parabolic, if they do not fix points in ℍ𝑛 and they fix exactly one on the

boundary;
• hyperbolic, if they do not fix points in ℍ𝑛 and they fix exactly two on the

boundary.

They can be visualized as follows.

• Elliptic isometries fixing the origin of the Poincaré disk correspond to
elements of 𝑂(𝑛).

• Parabolic isometries fixing 𝑝 ∈ 𝜕ℍ𝑛 also preserve all horospheres centered
at 𝑝. They are flat hypersurfaces that are orthogonal to all geodesics exiting
from 𝑝. In the Poincaré disk model, they are spheres tangent at 𝑝. In
the half&space model, when 𝑝 is the point at infinity, the horospheres are
horizontal affine hyperplanes.

• Hyperbolic isometries acts as translations along their axis, which is the
geodesic connecting the two fixed points.

If ℍ𝑛/Γ is a manifold, then Γ does not contain elliptics. If it is also compact, then
it can only contain hyperbolic isometries.

The following tells us that free abelian subgroups are all made of parabolic
isometries.

Lemma 1.15 .  Let 𝜑, 𝜓 be commuting isometries such that ⟨𝜑, 𝜓⟩ ≅ ℤ2. Then they
are parabolics fixing the same point 𝑝 ∈ 𝜕ℍ𝑛.

This means that hyperbolic manifolds cannot contain essential (i.e. 𝜋1&injective,
non&boundary parallel) embedded 2&tori.

Given a discrete subgroup Γ < Isom(ℍ𝑛), the boundary at infinity decomposes
in two natural subsets.

Definition 1.16 .  The limit set Λ(Γ) is defined by choosing any base point 𝑥0 ∈
ℍ𝑛 and taking

{𝛾(𝑥0) : 𝛾 ∈ Γ} ∩ 𝜕ℍ𝑛.

This does not depend on the choice of 𝑥0. The domain of discontinuity is defined
by Ω(Γ) ≔ 𝜕ℍ𝑛 ∖ Λ(Γ).

The reason why Ω(Γ) is called domain of discontinuity is that the action of Γ on
ℍ𝑛 ∪ Ω(Γ) is properly discontinuous. In particular, we have the following:

Proposition 1.17 .  If Γ has finite covolume, then Λ(Γ) = 𝜕(ℍ𝑛).



HYPERBOLIC MANIFOLDS AND FIBRATIONS 5

Proof :  If 𝑥 ∈ Ω(Γ), then by the proper discontinuity there is a half&space containing
𝑥 that intersects only finitely many of its Γ&translates. This implies that Γ has
infinite covolume. □

Definition 1.18 .  A discrete subgroup Γ of 𝑂(𝑛, 1) is called elementary if either
of the following equivalent condition holds:

• it stabilizes a finite set of points of ℍ𝑛;
• it stabilizes either a point of ℍ𝑛, a geodesic line, or a point in 𝜕ℍ𝑛 and all

the horospheres at that point;
• it is virtually abelian;
• its limit set Λ(Γ) has at most two points.

Proposition 1.19 .  Let Γ be non elementary. Then its action on Λ(Γ) is minimal,
i.e. it does not stabilize any proper closed subset of Λ(Γ).

Proof :  Let 𝑆 ⊆ Λ(Γ) be a proper closed Γ&invariant subset. Then we can construct
the convex hull 𝐶(𝑆), given by the intersection of all halfspaces that contain 𝑆.
Since Γ is non elementary, 𝑆 has at least two (and actually, infinitely many) points,
so 𝐶(𝑆) is non&empty.

Clearly, 𝐶(𝑆) is Γ&invariant. This implies that Λ(Γ) ⊆ 𝑆. □

Corollary 1.20 .  Let Γ be non elementary, and Γ′ ⊲ Γ be an infinite normal
subgroup. Then Λ(Γ′) = Λ(Γ).

Proof :  By normality, we have that every 𝛾 ∈ Γ sends Γ′(𝑥) to Γ′(𝛾(𝑥)), so in
particular Λ(Γ′) is Γ&invariant. We conclude by the previous proposition. □

2. Lecture 2
We can characterise isometries via their displacement function.

Definition 2.1 .  The displacement of an isometry 𝜑 ∈ Isom(ℍ𝑛) is defined by
𝑑(𝜑) = inf

𝑧∈ℍ𝑛
𝑑(𝑧, 𝜑(𝑧))

Proposition 2.2 .  An isometry 𝜑 is:
• hyperbolic if and only if 𝑑(𝜑) > 0, and the infimum is realized;
• elliptic if and only if 𝑑(𝜑) = 0 and the infimum is realized on its axis;
• parabolic if 𝑑(𝜑) = 0 and the infimum is not realized.

Let 𝑀  be a hyperbolic manifold. Denote by [𝑆1, 𝑀] the maps 𝑆1 → 𝑀  up to
homotopy. These are in natural correspondence to conjugacy classes of 𝜋1(𝑀).
Note that type (i.e. hyperbolic or parabolic) and displacement is well defined on
conjugacy classes of 𝜋1(𝑀), that has a natural action on ℍ𝑛 (up to conjugation).

Proposition 2.3 .  Every hyperbolic element of [𝑆1, 𝑀] is represented by an unique
closed geodesic with length equal to the displacement.

A parabolic element of [𝑆1, 𝑀] is never represented by a closed geodesic.

2.1. Hyperbolic surfaces.

In dimension 2, we have a full classification of compact surfaces given the genus
𝑔, and the boundary components 𝑏.

Theorem 2.4 .  The interior of a compact orientable surface 𝑆 admits a hyperbolic
structure if and only if 𝜒(𝑆) < 0, that is, if 2𝑔 + 𝑏 > 2.
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This tells us that there only finitely many surfaces which are not hyperbolic (the
sphere, the disc, the annulus, and the torus). All the other admit a hyperbolic
metric (and, in fact, an interesting problem is to study the space of such hyperbolic
structures, called the Teichmüller space).

To prove this, we use hyperbolic polygons. We need the following lemma.

Lemma 2.5 .  Let 𝑛 ≥ 3 be an integer, and let 𝛼 ∈ [0, 𝜋 − 2𝜋
𝑛 ). There exists a

regular hyperbolic 𝑛-gon with angles all equal to 𝛼.

When the angles are 0, the polygon has vertices at infinity; this is called an ideal
polygon.

Proof :  Consider the Poincaré disk in the complex plane, and let 𝜁 ≔ 𝑒2𝑖𝜋
𝑛  be the

𝑛&th root of unity. For 𝜌 ∈ (0, 1] consider the points 𝜌𝜁𝑘, for 𝑘 ∈ {1, …, 𝑛}. The
convex hull of these points is a hyperbolic 𝑛&gon. When 𝜌 → 0, then 𝛼 tends to the
Euclidean angle 𝜋 − 2𝜋

𝑛 , while for 𝜌 → 1 then 𝛼 → 0. We conclude by a continuity
argument. □

Remark 2.6 .  Careful that in dimension ≥ 3 ideal polyhedra have positive dihedral
angles!

From this, we get there exists a hyperbolic metric on the pair of pants, by taking
two right&angled hexagons and glueing them together.

Proof of Theorem 2.4 :  One can show that every compact surface 𝑆 with 𝜒(𝑆) < 0
can be constructed by glueing together −𝜒(𝑆) pairs of pants. □

The theorem holds also if we remove some boundary components from 𝑆 to get
cusps. To show this, one can prove that we have the freedom to choose the length
on the three boundary components of the pair of pants.

Lemma 2.7 .  For every 𝑎, 𝑏, 𝑐 ≥ 0 there exists a hyperbolic right-angled hexagon
with alternate side lengths 𝑎, 𝑏, 𝑐. This hexagon is unique up to isometry.

Corollary 2.8 .  For every 𝑎, 𝑏, 𝑐 ≥ 0 there exists a unique hyperbolic metric on the
pair of pants such that the boundary are geodesics of length 𝑎, 𝑏, 𝑐. When the length
is 0, we mean that the boundary component is replaced by a cusp.

The Euler characteristic is tightly related with the volume of the manifold –
in even dimension, as all closed odd&dimensional manifolds have vanishing Euler
characteristic.

Theorem 2.9 (Chern&Gauss&Bonnet).  Let 𝑛 ∈ ℕ be even. There is a constant 𝑐𝑛 ≠
0 such that for every hyperbolic 𝑛-manifold 𝑀 we have 𝜒(𝑀) = 𝑐𝑛 ⋅ vol(𝑀).

Proposition 2.10 .  Let 𝑀 be a hyperbolic manifold of even dimension. Then 𝑀
does not fiber over the circle.

Proof :  Combine Theorem 2.9 with Lemma 1.4. □

Since we cannot obtain fibrations, we can weaken the definition a bit.

Definition 2.11 .  A perfect circle-valued Morse function is a Morse function
𝑓:  𝑀 → 𝑆1 with |𝜒(𝑀)| critical points.

Proposition 2.12 .  Let 𝑆 be a closed surface of genus 𝑔. Then it admits a perfect
circle-valued Morse function.
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2.2. Hyperbolic 3-manifolds.

Since we are interested in odd dimensions, the first step is to understand dimen&
sion 3. Hyperbolic 3&manifolds are quite important in the study of the topology
of 3&manifold, as it is the richest of the eight geometries (𝑆3, ℝ3, ℍ3, 𝑆2 × ℝ, ℍ2 ×
ℝ, Nil, Sol, S̃L2) that appear in Thurston’s Geometrisation Conjecture, proved by
Perelman in 2002.

To study 3&manifold, it is often useful to understand how surfaces are embedded
inside it. We introduce the following definitions.

Definition 2.13 .  Let 𝑀  be a compact 3&manifold with (possibly empty bondary).
A properly embedded surface is an embedded surface 𝑆 ⊂ 𝑀  such that 𝜕𝑆 = 𝜕𝑀 ∩
𝑆.

Definition 2.14 .  Let 𝑀  be a compact oriented 3&manifold, and let 𝑆 ⊆ 𝑀  be an
oriented surface. We say that 𝑆 is incompressible if every loop in 𝑆 that bounds an
embedded disk in 𝑀  also bounds a disk in 𝑆.

Remark 2.15 .  Being incompressible is equivalent to being 𝜋1&injective, that is the
inclusion 𝑆 ↪ 𝑀  induce an injective map between fundamental groups.

Definition 2.16 .  A properly embedded torus in a compact oriented 3&manifold
𝑀  is called essential if it is incompressible and cannot be homotoped inside 𝜕𝑀 .

Proposition 2.17 .  If the interior of 𝑀 admits a hyperbolic structure, then 𝑀
does not contain essential tori.

Let 𝑀  be a fibering 3&manifold. Assume for the sake of simplicity that it is closed.
Let 𝐹  be a fiber.

Lemma 2.18 .  The fiber 𝐹  satisfies 𝜒(𝑆) < 0.

Proof :  Since all orientation&preserving diffeomorphisms of 𝑆2 are isotopic to the
identity, if 𝐹 ≅ 𝑆2 then 𝑀 ≅ 𝑆2 × 𝑆1, which cannot admit a hyperbolic structure,
since hyperbolic manifolds cannot contain essential tori.

On the other hand, if 𝐹 ≅ 𝕋2, then 𝑀  contains an essential torus and therefore
is not hyperbolic. □

So we can lift to the universal cover

↑

↟↑

↟

↟ ↟ ↟

𝐷 ≅ ℍ2 ℍ3 ℝ

𝐹 𝑀 𝑆1

Proposition 2.19 .  We have that 𝐷 ∩ 𝜕ℍ3 = 𝜕ℍ3.

Proof :  The fundamental group Γ ≔ 𝜋1(𝑀) acts as a group of isometries of ℍ3, and
so does the normal subgroup Γ′ ≔ 𝜋1(𝐹) ⊲ Γ.
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It is not difficult to see that 𝐷 ∩ 𝜕ℍ3 = Λ(Γ′), which by Corollary 1.20 is equal
to Λ(Γ). Since Γ has finite covolume, the latter is the whole sphere. □

This means that a fiber of a fibering hyperbolic 3&manifold, despite admitting a
hyperbolic metric, is very far from being nicely embedded from a metric point
of view.

3. Lecture 3
This could suggest that hyperbolic 3&manifolds cannot fiber at all. However,

hyperbolic 3&manifold that fiber do exist.

Theorem 3.1 (Jørgensen, 1977).  The complement of the figure-8 knot fibers with
fiber the punctured torus.

Later Thurston gave a criterion for when a manifold admits a hyperbolic structure.
First let us see some definitions.

Definition 3.2 .  A manifold 𝑀  is said to be:
• irreducible if every sphere bounds a ball;
• atoroidal if there are no essential tori;
• Haken if it contains an incompressible surface.

Theorem 3.3 (Thurston’s hyperbolization).  Let 𝑀 be an irreducible, atoroidal,
Haken 3-manifold with toric boundary. Then the interior of 𝑀 admits a complete
hyperbolic metric of finite volume.

It turns out that we can decide whether a mapping torus admits a hyperbolic
metric by looking directly at its monodromy.

Definition 3.4 .  Let 𝑆 be a surface of genus ≥ 2, and let 𝜑 be a diffeomorphism.
We say that 𝜑 is:

• periodic, if 𝜑𝑛 is isotopic to the identity;
• reducible, if it preserves a union of finitely many disjoint simple closed

curves (up to isotopy);
• pseudo&Anosov otherwise.

Theorem 3.5 (Thurston).  Let 𝑆 be a closed surface, and 𝜑:  𝑆 → 𝑆 be a self-
diffeomorphism. Then 𝑆 ⋊𝜑 𝑆1 is hyperbolic if and only if 𝑆 has genus ≥ 2 and 𝜑
is pseudo-Anosov.

Proof :  One can see directly that it is irreducible and Haken, as the fiber is
incompressible (e.g. by looking at the abelian cover). To see that it is atoroidal,
one can look at 𝑆 ∩ 𝑇 ⊂ 𝑇 . By pushing one can remove non essential curves, and
then we are left with a bunch of parallel curves. This means that the fiber cuts the
tours in a bunch of annuli, whose boundary curves inside 𝑆 are preserved by the
monodromy; this is a contradiction as we assumed that the map is pseudo&Anosov.
□

Later, Agol and Wise managed to prove the following.

Theorem 3.6 (Agol, Wise, ~2010).  Every hyperbolic 3-manifold virtually fibers
over the circle.

3.1. Higher dimension.
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We have seen that in dimension 3, the fiber admits a hyperbolic structure, even
if it does not come from the metric of 𝑀 . In higher dimension, we also lose this.

Theorem 3.7 .  Let 𝑀 a hyperbolic manifold of dimension 𝑛 > 3, that fibers over
the circle with fiber 𝐹 . Then 𝐹  cannot admit a hyperbolic metric.

This is a consequence of the following facts.

Theorem 3.8 .  Let 𝑀 be a hyperbolic manifold. Then the group of isometries
Isom(𝑀) is finite.

Theorem 3.9 (Mostow Rigidity).  Let 𝑀 be a manifold of dimension ≥ 3. Then
every homotopy equivalnce (in particular, every self-diffeomorphism) 𝑓:  𝑀 → 𝑀
is homotopic to a unique isometry.

Proof : [Proof of Theorem 3.7] Let 𝜑:  𝐹 → 𝐹  be the monodromy. If 𝐹  were hyper&
bolic, then 𝜑 would be isotopic to an isometry, and therefore one of its powers
would be isotopic to the identity. This implies that 𝑀  is virtually a product 𝐹 ×
𝑆1, which contradicts hyperbolicity. □

4. Lecture 4

4.1. Finiteness properties.

Given a fibration 𝑓:  𝑀 → 𝑆1, one may pass to fundamental groups and get
a map 𝑓∗:  𝜋1(𝑀) ↠ ℤ. We are interested in the following question: under which
assumptions an epimorphism 𝜑:  𝜋1(𝑀) ↠ ℤ is induced by a fibration on 𝑀? In
this sense, the object to study is the kernel of the map and its so called finiteness
properties.

Definition 4.1 .  A space 𝑋 is called aspherical if 𝜋𝑛(𝑋) is trivial for all 𝑛 ≥ 2.

Definition 4.2 .  Let 𝐺 be a group. We say that a topological space 𝑋 is an
Eilenberg&MacLane space for 𝐺, or that 𝑋 is a 𝐾(𝐺, 1), if 𝑋 is aspherical and
𝜋1(𝑋) ≅ 𝐺.

Definition 4.3 .  A group 𝐺 is said to be:
• of type ℱ𝑛 if it admits 𝐾(𝐺, 1) that is a CW&complex with finite 𝑛&skeleton;
• of type ℱ∞ if it is of type ℱ𝑛 for all 𝑛 ∈ ℕ;
• of type ℱ if it is the fundamental group of a finite aspherical CW&complex.

Remark 4.4 .  A group is of type ℱ1 if and only if it is finitely generated. It is of
type ℱ2 if and only if it is finitely presented.

Let 𝑀  be a hyperbolic 𝑛&manifold with fundamental group Γ. Its universal cover is
ℍ𝑛, so it is aspherical. Let 𝑓:  𝑀 → 𝑆1 be a fibration. We can construct the infinite
cover 𝑀̃ = ℍ𝑛⧸ ker(𝑓∗), that is diffeomorphic to a product 𝐹 × ℝ.

The cover 𝑀̃  is an infinite volume hyperbolic manifold, and is therefore aspher&
ical, so 𝐹  also is. This implies that 𝐹  is an Eilenberg&MacLane space for ker(𝑓∗) ≅
𝜋1(𝐹), so 𝜋1(𝐹) is of finite type.

Assume now we have a map 𝜋1(𝑀) → ℤ. Can it be induced by a fibration?
Clearly, we need the kernel to be of type ℱ. In dimension 3, it suffices to check
that the kernel is finitely generated.
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Theorem 4.5 ([Sta61]) .  Let 𝑀3 be a compact 3-manifold with aspherical (possibly
empty) boundary. Let 𝜑:  𝜋1(𝑀) ↠ ℤ be surjective with finitely generated kernel.
Then 𝜑 is induced by a fibration.

For this reason, we have this definition.

Definition 4.6 .  An epimorphism 𝜑:  𝐺 ↠ 𝑍 is said to be an algebraic fibration if
it has finitely generated kernel.

4.2. Hyperbolic groups.

Interestingly, constructing fibrations of hyperbolic manifolds has applications in
the study of subgroups of hyperbolic groups. Let us recall some definitions.

Definition 4.7 .  Let 𝑋 be a metric space. A geodesic is an isometric embedding
𝛾 : [0, ℓ] → 𝑋, meaning that 𝑑(𝛾(𝑡), 𝛾(𝑠)) = |𝑡 − 𝑠|. The space is called geodesic if
for every pair of points there is a geodesic connecting them.

Definition 4.8 .  Let 𝐺 = ⟨𝑆⟩ be a finitely generated group. Its Cayley graph
Cay(𝐺, 𝑆) is the graph whose vertex set is 𝐺 and there is an arc between 𝑔 and 𝑔𝑠
for all 𝑔 ∈ 𝐺 and all 𝑠 ∈ 𝑆.

We can put a metric space structure on the Cayley graph by declaring every edge
to have unit length.

Definition 4.9 .  A geodesic metric space is said to be 𝛿-hyperbolic if geodesic
triangles are 𝛿&thin, that is, every side is contained in a 𝛿&neighbourhood of the
other two.

Example 4.10 .
• Every compact space is 𝛿&hyperbolic for 𝛿 bigger than the diameter.
• Trees are 0&hyperbolic.
• The Eucledian space 𝔼𝑛 is not hyperbolic for 𝑛 ≥ 2.
• There exists 𝛿 > 0 such that every hyperbolic manifold is 𝛿&hyperbolic.

Definition 4.11 .  A group 𝐺 is said to be hyperbolic if it has one of the following
equivalent properties:

• its Cayley graph is 𝛿&hyperbolic for some 𝛿 > 0,
• it acts properly and cocompactly on a 𝛿&hyperbolic space.

Example 4.12 .
• Free groups are hyperbolic.
• A group containing ℤ2 is not hyperbolic.
• Fundamental groups of compact hyperbolic manifolds are hyperbolic.

Hyperbolic groups satisfy the best possible finiteness properties.

Proposition 4.13 .  Every torsion-free hyperbolic group 𝐺 is type ℱ.

The proof relies on the construction of the Rips complex.

Definition 4.14 .  Let 𝑋 be a metric space, and 𝑅 > 0. The Rips complex 𝑃𝑅(𝑋)
is the flag simplicial complex whose vertex set is 𝑋 and there is an 𝑛&simplex for
every (𝑛 + 1)&uple of points in 𝑋 at pairwise distance ≤ 𝑅.

Lemma 4.15 ([BH99], Proposition 3.23).  Let 𝑌  be a geodesic 𝛿-hyperbolic space,
and let 𝑋 ⊆ 𝑌  be an 𝑟-dense subset. Then 𝑃𝑅(𝑋) is contractible for 𝑅 ≥ 4𝛿 + 6𝑟.
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Proof of Proposition 4.13 :  Let 𝑋 be the vertex set of the Cayley graph. By the
lemma, for big enough 𝑅 the Rips complex 𝑃𝑅(𝑋) is contractible. The group 𝐺 acts
on 𝑋 by isometries, and therefore it acts on 𝑃𝑅(𝑋). This is a finite&dimensional
complex, and the action has finite stabilizers; since the group is torsion&free, then
this means that the action is free. The quotient is therefore a finite&dimensional
𝐾(𝐺, 1). □

Remark 4.16 .  If 𝐺 is not torsion&free, one can still get that 𝐺 is type ℱ∞.

Whenever we introduce a property of groups, it is natural to ask whether it passes
to subgroups. In general, finiteness properties are not inherited; for example, the
commutator subgroup of a free group is not finitely generated. This is also an
example of a subgroup of a hyperbolic group that is not hyperbolic, as hyperbolic
groups satisfy strong finiteness properties.

It may a priori be possible that if we ask strong enough finiteness properties on
the subgroup, we can guarantee its hyperbolicity. However, there are subgroups of
hyperbolic groups that are:

• finitely generated not finitely presented [Rip82];
• finitely presented not type ℱ3 [Bra99];
• type ℱ3 not ℱ4 [LMP21];
• more in general type ℱ𝑛 not ℱ𝑛+1 for all 𝑛 ∈ ℕ [LP22];

So unless we ask that the subgroup is ℱ, we cannot guarantee that it is hyperbolic.
By using fibrations, we can show that even that is not enough.

Theorem 4.17 .  Let 𝑀 be a compact hyperbolic 𝑛-manifold, 𝑛 > 3, and 𝐹 ↪ 𝑀 ↠
𝑆1 be a fibration. Let 𝐺 ≔ 𝜋1(𝑀), 𝐻 ≔ 𝜋1(𝐹). Then 𝐺 is hyperbolic, and 𝐻 is a
subgroup that is type ℱ but not hyperbolic.

Proof :  𝐺 is hyperbolic since it is the fundamental group of a compact hyperbolic
manifold, and 𝐹  is of type ℱ since it is the fundamental group of a compact
manifold. We only need to show that 𝐹  is not hyperbolic, which is the algebraic
translation of Theorem 3.7.

The monodromy 𝜑:  𝐹 → 𝐹  induces an automorphism 𝜑∗:  𝐻 → 𝐻. This has
infinite order in Out(𝐻) (otherwise 𝐺 would be virtually 𝐻 × ℤ).

By Rips’ theory, every hyperbolic group with infinite outer automorphism group
splits over a cyclic subgroup. So, if 𝐻 were hyperbolic, then 𝐻 = 𝐴 ∗ℤ 𝐵.

Then we have the following Mayer&Vietoris sequence:

𝐻𝑛−2(ℤ) → 𝐻𝑛−1(𝐻) → 𝐻𝑛−1(𝐴) ⊕ 𝐻𝑛−1(𝐵) → 𝐻𝑛−1(ℤ)

Since 𝑛 > 3, we get 𝐻𝑛−1(𝐻) ≅ 𝐻𝑛−1(𝐴) ⊕ 𝐻𝑛−1(𝐵).

However, both 𝐴 and 𝐵 are infinite index subgroups of 𝐻, and therefore they
are the fundamental group of some non&compact (𝑛 − 1)&manifold. So their (𝑛 −
1)&th cohomology vanishes, while 𝐻𝑛−1(𝐻) ≅ ℤ. □

Note that a similar result can also be obtained when 𝑀  is only finite volume. In
this case, one must first perform some sort of filling (otherwise the fundamental
group would not be hyperbolic).

5. Lecture 5
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5.1. Bestvina-Brady Morse Theory.

Now we have motivated why constructing high dimensional hyperbolic manifolds
that fiber is an interesting problem. How one can produce such examples?

First of all, constructing hyperbolic manifolds in high dimension is not easy.
Even the existence of hyperbolic manifolds in all dimensions is not a trivial fact.

There are two known methods to build hyperbolic manifolds.

• The first one is via arithmetic methods. More or less, the idea is to look
at integer lattices of 𝑂(𝑛, 1) to construct discrete subgroups of Isom(ℍ𝑛).
This is a very reliable method to build hyperbolic manifolds, but has the
disadvantage that we have poor understanding of the topology of such
manifolds.

• The second one is combinatorial, by glueing together copies of polytopes.
This is less reliable, as we will see that it cannot produce examples in
arbitrary dimensions, but is more concrete.

We will focus on the second approach. To this end, let us introduce some notion of
piecewise linear geometry. We follow [RS82].

Definition 5.1 .  A polyhedron is a subset 𝑋 ⊆ ℝ𝑑 such that every point 𝑎 ∈ 𝑋
has a cone neighbourhood of the form 𝑎𝐿. The neighbourhood is called a star of 𝑝,
while 𝐿 is called a link.

Definition 5.2 .  A map 𝑓:  𝑋 → 𝑌  between polyhedra is piecewise linear or PL if
every 𝑎 ∈ 𝑃  has a star on which 𝑓 is linear along rays, i.e. 𝑓(𝜆𝑎 + 𝜇𝑥) = 𝜆𝑓(𝑎) +
𝜇𝑓(𝑥).

Definition 5.3 .  A PL&structure on a topological set 𝑋 is an atlas such that charts
map to polyhedra, and transition maps are PL.

We can always assume that the link and star of a point are polyhedra; in this case,
they are well&defined up to PL isomorphisms.

Definition 5.4 .  An affine polytope is the compact intersection of finitely many
half&spaces of ℝ𝑑. Equivalently, it is the convex hull of finitely many points in ℝ𝑑.

A face of a polytope 𝑃  is the intersection of 𝑃  with the boundary of a hyperplane
containing it. The empty set and 𝑃  itself are conventionally considered facets.

Facets, ridges, edges, and vertices are respectively 1&codimensional, 2&codimen&
sional, 1&dimensional, and 0&dimensional faces of 𝑃 .

Definition 5.5 .  An affine cell complex is a CW&complex 𝑋, together with a
characteristic function 𝜒𝜎:  𝜎 → ℝ𝑑 from each cell 𝜎 of 𝑋, such that:

• each 𝜒𝜎 is a homeomorphism on its image;
• whenever 𝜏 < 𝜎, then the composition 𝜒𝜎 ∘ 𝜒−1

𝜏  is affine.

Example 5.6 .
• Every simplicial complex is naturally an affine cell complex, with the

characteristic function sending each 𝑛&simplex to the standard 𝑛&simplex.
• A cube complex is an affine cell complex with the characteristic function

sending 𝑛&cubes to [0, 1]𝑛.
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We introduce a piecewise linear version of Morse theory, that was introduced by
Bestvina and Brady.

Definition 5.7 ([BB97]).  Let 𝑋 be an affine cell complex. A real&valued Bestvina-
Brady Morse function is a map 𝑓:  𝑋 → ℝ such that, for each positive&dimensional
cell 𝜎 ∈ 𝑋:

• the composition 𝑓 ∘ 𝜒−1
𝜎  is the restriction of an affine map ℝ𝑑 → ℝ;

• the restriction 𝑓|𝜎 is nonconstant.

Similarly, a circle&valued Bestvina&Brady Morse function is a map 𝑓:  𝑋 → 𝑆1 such
that its lift 𝑓:  𝑋̃ → ℝ is Bestvina&Brady Morse.

In what follows, given a Bestvina&Brady Morse function 𝑓:  𝑋 → ℝ and 𝑎 ∈ ℝ, we
denote by 𝑋≤𝑎 the sublevel 𝑓−1(−∞, 𝑎]. Bestvina&Brady Morse functions behave
similarly to standard Morse function: the topology of sublevels may change only
when crossing a vertex.

Definition 5.8 .  Let 𝑌 ⊆ 𝑋 be polyhedra, and let 𝐵 ⊆ 𝑃  such that 𝑌 ∪ 𝐵 = 𝑋
and 𝐵 ∩ 𝑌  is a (𝑑 − 1)&ball. In this case, we say that there is an elementary collapse
𝑋 ⇘ 𝑌 . We say 𝑋 collapses to 𝑌 , or 𝑋 ↘ 𝑌 , if there is a sequence of elementary
collapses from 𝑋 to 𝑌 . If 𝑋 collapses to a point, we say that 𝑋 is collapsible.

Lemma 5.9 .  Let 𝑓:  𝑋 → ℝ be Morse, and let 𝑎 < 𝑏 be such that the subset 𝑓−1[𝑎, 𝑏)
does not contain any vertex of 𝑋. Then 𝑋≤𝑏 collapes onto 𝑋≤𝑎.

Proof :  Subdivide the cell complex by cutting along the levels 𝑎 and 𝑏. For each
cell 𝜎, starting from the highest&dimensional ones, we can perform an elementary
collapse by removing the interior of 𝜎 and of 𝜎 ∩ 𝑓−1(𝑏). □

What happens when we cross a vertex? To describe it, we need the definition of
ascending and descending link.

Definition 5.10 .  The ascending link of a vertex 𝑣, denoted link↑(𝑣), is the inter&
section of link(𝑣) with cells where 𝑣 is a minimum for 𝑓 . Similarly, the descending
link, denoted link↓(𝑣), is the intersection of the link with cells where 𝑣 is a maximum.

Theorem 5.11 .  Let 𝑓:  𝑋 → ℝ is a real-valued Morse function on an affine cell
complex 𝑋, and let 𝑎 < 𝑏 ∈ ℝ such that there is a single vertex 𝑣 with 𝑎 < 𝑓(𝑣) ≤
𝑏. Then 𝑋≤𝑏 collapses to 𝑋≤𝑎 with a cone attached over link↓(𝑣), where link↓(𝑣)
embeds naturally inside 𝑓−1(𝑎).

Proof :  Collapse all cells that intesect 𝑓−1(𝑏) in a top&dimensional cell. After that,
we are left with 𝑋≤𝑎 with a cone attached over link↓(𝑣). □

5.2. Right-angled Coxeter groups and polytopes.

Let Γ be a finite simplicial graph.

Definition 5.12 .  The right&angled Coxeter group 𝑊Γ is the group with the
following presentation:

𝑊Γ ≔ ⟨𝑉 (Γ) | 𝑣2 = 1 for 𝑣 ∈ 𝑉 (Γ), [𝑣, 𝑤] = 1 for (𝑣, 𝑤) ∈ 𝐸(Γ)⟩.

If Γ′ is a subgraph of Γ, one may consider the subgroup generated by the vertices
of Γ′: this is canonically isomorphic to 𝑊Γ′ .

Proof :  Let 𝐻 be the subgroup generated by the vertices. We have the following
commutative diagram:
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↟

↟
↑ 𝑊Γ

𝑊Γ′

𝐻

and the composition 𝐻 → 𝑊Γ′ is surjective. □

The group 𝑊Γ acts on a canonical space, called the Davis complex. To construct
it, we consider the poset 𝒫 given by finite cosets of the form 𝑔𝑊Γ′ , so Γ′ is a
clique in Γ. The poset is also graded by the number of generators of 𝑊Γ′ . Then we
can construct the Davis complex by considering the geometric realisation of 𝒫 as
simplicial complex.

We will denote the Davis complex with 𝐷Γ. 𝑊Γ acts properly and cocompactly
by left multiplication.

The interesting case for us is when this group comes from reflections on the faces
of a hyperbolic polytope.

Definition 5.13 .  A right-angled hyperbolic polytope 𝑃 ⊆ ℍ𝑛 is the finite&volume
intersection of finitely many half&spaces, such that every pair of hyperspaces is
either disjoint or it intersects orthogonally.

The adjacency graph of 𝑃  is the graph whose vertices correspond to facets of
𝑃 , and an edge connects two facets that intersect in a ridge.

If we take the flag complex of the adjacency graph, one gets a polytope called the
dual of 𝑃 .

Reflecting on the facets of 𝑃  defines an action of 𝑊Γ on ℍ𝑛, and yields a
tessellation of ℍ𝑛 into copies of 𝑃 .

Proposition 5.14 .  The barycentric subdivision of the tessellation is isomorphic
to the Davis complex of 𝑊Γ, with 𝑊Γ acting equivariantly.

Proof :  Note that the Davis complex is a manifold (one may check the links of the
points, they are the dual of 𝑃 ). Now we define a map from 𝐷Γ to 𝐶 as follows:
for each vertex 𝑔𝑊Γ′ , consider the face 𝐹  of 𝑃  stabilized by 𝑊Γ′ , which is the
intersection of the facets corresponding to vertices of Γ′. We send 𝑔𝑊Γ′ to the
barycentre of 𝐹 .

This map is a well&defined covering map, so it is a homeomorphism since ℍ𝑛 is
simply connected. □

Instead of considering the tessellation into copies of 𝑃 , it is more useful to look
at the dual tessellation. This is a cube complex, since we only have right angles.
Note that the barycentric subdivision of this cube complex is still isomorphic to
the Davis complex.
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Remark 5.15 .  When 𝑃  has ideal vertices, one has to be a bit careful about
the definition of barycentric subdivision: this only yields a retract of the original
tessellation.

6. Lecture 6
Let 𝑃  be a hyperbolic right angled 𝑛&polytope. Let Γ be the associated adjacency

graph. The associated reflection group is isomorphic to the Coxeter group 𝑊Γ, and
generates a tessellation of ℍ𝑛; last time we saw that the barycentric subdivision is
isomorphic to the Davis complex.

We recall how this identification works. We fix one copy 𝑃𝑒 of the polytope.
Every other polytope is of the form 𝑔𝑃𝑒 for a unique 𝑔 ∈ 𝑊Γ; we call it therefore
𝑃𝑔. The action is then defined by ℎ ⋅ 𝑃𝑔 = 𝑃ℎ𝑔.

It is not difficult to show that a 𝑘&codimensional cell 𝜎 belongs to 2𝑘 copies of 𝑃 ;
these are of the form {𝑃ℎ : ℎ ∈ 𝑔𝑊Γ′}, where Γ′ is a clique of Γ. In particular, an
element ℎ ∈ 𝑊Γ fixes 𝜎 if and only if it stabilizes the coset 𝑔𝑊Γ′ , that is 𝑔−1ℎ𝑔 ∈
𝑊Γ′ .

We now want to construct a hyperbolic manifold by considering an appropriate
quotient of this tessellation. That is, we need to find 𝐺 < 𝑊Γ that acts freely and
such that the quotient has finite volume; that is, we need that 𝐺 has finite index
in 𝑊Γ.

6.1. The Löbell construction.

Clearly 𝑊Γ is not torsion&free (it has fixed points). Fortunately, for right&angled
Coxeter groups we have a standard torsion&free subgroup.

Proposition 6.1 .  The commutator subgroup 𝐺 < 𝑊Γ is torsion-free.

Proof :  We show that it does not contain any elliptic. The stabilizer of 𝑔𝑊Γ′ is the
subgroup 𝑔𝑊Γ′𝑔−1. Since 𝑊Γ′ survives in the abelianization, its intersection with
𝐺 is trivial. □

So 𝑀 ≔ ℍ𝑛⧸ G is a hyperbolic manifold. This is tessellated by 2𝑐 copies of 𝑃 ,
where 𝑐 is the number of facets of 𝑃 : they are in correspondence with 𝑊Γ⧸ G =
(𝑊Γ)ab = (ℤ/2ℤ)𝑐.

Remark 6.2 . The manifold can be constructed iteratively by doubling along facets.

The dual of this tessellation is a cube complex 𝐶, that can be visualized as follows.
The vertices of the cube complex are in 1–1 correspondence with copies of the
polytope, i.e. with (ℤ/2ℤ)𝑐 (after fixing a numbering for the facets). These are
naturally the vertices of a 𝑐&cube.

The 1&skeleton is naturally the 1&skeleton of the cube. Then, whenever we see
the 1&skeleton of a 𝑘&cube whose corresponding 𝑘&facets are pairwise adjacent.

Lemma 6.3 .  Let 𝑣 be a vertex of 𝐶. Then link(𝑣) ≅ Δ(Γ), where Δ(Γ) is the
unique flag complex with Γ as 1-skeleton.

Recall that if 𝑃  is a compact polytope, then this cube complex is PL&homeomorphic
to a hyperbolic manifold 𝑀 .

We want to define a circle&valued Bestvina–Brady Morse function on 𝐶. We do
this inductively on the skeleton.



16 MATTEO MIGLIORINI

First, we let 𝑓(𝑣) = 0 ∈ ℝ⧸ ℤ for every vertex 𝑣 ∈ 𝐶. Then, we want to extend
it on every edge so that on each it does a full turn around 𝑆1. To do so, we need
to choose an orientation on each edge.

We use the following combinatorial object, introduced by [JNW19].

6.2. States.

Let 𝑣 be a vertex of 𝐶.

Definition 6.4 .  A state on 𝑣 is a labelling of the vertices of Γ with I (for In) and
O (for Out).

So we think of it as a function 𝑠𝑣:  (ℤ/2ℤ)𝑐 → {𝑂, 𝐼}. This induces an orientation
on all the edges incident to 𝑣.

The plan is defining a state on every vertex of 𝐶, so that they define an
orientation on every edge. There is one caveat: the orientation induced by the two
endpoints of an edge should be the same. That is, we need

𝑠𝑣+𝑒𝑖
(𝑖) ≠ 𝑠𝑣(𝑖)

for all 𝑖 ∈ {1, …, 𝑐}, 𝑣 ∈ (ℤ/2ℤ)𝑐.

Instead of defining a state on every vertex and check this condition, we choose
an initial state 𝑠0 and we propagate it with moves.

6.3. Moves.

Definition 6.5 .  A move is a subset 𝑚 of the facets. A set of moves is a partition
of the facets into moves.

A move 𝑚 acts on a state by inverting the status of all facets in 𝑚, and leaving
the other unchanged.

Choose a set of moves. For 𝑖 ∈ {1, …, 𝑐}, we let 𝑚𝑖 be the move containing the
𝑖&th facet. We now define

𝑠𝑒𝑖1+…+𝑒𝑖𝑘
= 𝑚𝑖1

(…(𝑚𝑖𝑘
(𝑠0))…).

Lemma 6.6 .  We have that 𝑠𝑣+𝑒𝑖
(𝑖) ≠ 𝑠𝑣(𝑖).

Proof :  Since the actions of the moves commute, we have that 𝑠𝑣+𝑒𝑖
= 𝑚𝑖(𝑠𝑣), and

𝑚𝑖(𝑠𝑣)(𝑖) ≠ 𝑠𝑣(𝑖) by definition. □

This defines an orientation of each edge of 𝐶, and a map 𝐶(1) → 𝑆1 given by sending
each edge, identified as the interval [0, 1], to 𝑆1 via [0, 1] ↪ ℝ ↠ ℝ⧸ ℤ.

We now try to extend it to the 2&skeleton. We analyze the configurations that
may appear: we look at a square, that corresponds to a pair of adjacent facets
𝐹𝑖, 𝐹𝑗.
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Figure 1. The three possible configurations of squares that may appear.
The first is when 𝐹  and 𝐹 ′ belong to different moves. The second is
when 𝐹, 𝐹 ′ belong to the same move, but they have the same status.
The third is if they belong to different moves, and they have opposite

status.

Definition 6.7 .  A set of moves is called sparse if each pair of adjacent facets
belongs to different moves.

In this case, all the squares are of the first kind. We extend the map 𝑓 to the whole
𝐶 as follows. Let 𝑄 be a 𝑘&cube of 𝐶; this is canonically identified with [0, 1]𝑘 (up
to a permutation of the coordinates). We define on it 𝑓:  𝑄 → 𝑆1 by

𝑓(𝑥1, …, 𝑥𝑛) = 𝑥1 + … + 𝑥𝑛 mod(ℤ).

This defines a Bestvina–Brady Morse function on 𝐶. We want to study the
ascending and descending links of this function.

Proposition 6.8 .
• If all the ascending and descending links are connected, then 𝑓 is an

algebraic fibration.
• If all the ascending and descending links are collapsible, then 𝑓 can be

smoothened to a smooth fibration over the circle.

Ascending and descending links can be studied well with the states. If 𝑠 is a state,
denote by Γ𝑂

𝑠  and Γ𝐼
𝑠 the induced subgraphs of Γ with labels O and I respectively.

Lemma 6.9 .  The ascending and descending links at 𝑣 are Δ(Γ𝑂
𝑠𝑣

) and Δ(Γ𝐼
𝑠𝑣

)
respectively.

This tells us that, if we find a sparse set of moves and an initial state, such that
its orbit with respect to the action of the moves has all collapsible ascending and
descending links, then we are done.

However, the requirement of being sparse is very strong, so it is difficult to find
this property on high&dimensional right&angled hyperbolic polytopes.

We relax the requirement to allow the second type of square. The third is not
allowed as we cannot extend the function continuously to the whole square.

Definition 6.10 .  A state is compatible with the set of moves if, whenever two
adjacent facets are in the same move, they have the same status.

When the initial state is compatible, there is still a way to define a Bestvina–Brady
Morse function, but this time we need to perform a subdivision (one barycentric
subdivision is enough). This allowed to prove the following.

Theorem 6.11 ([IMM22]).  There exists a hyperbolic 5-manifold that fibers over
the circle.



18 MATTEO MIGLIORINI

References
[Mar16] B. Martelli, “An Introduction to Geometric Topology,” arXiv:1610.02592

[math], Oct. 2016, [Online].  Available: http://arxiv.org/abs/1610.02592

[Sta61] J. R. Stallings, “On fibering certain 3&manifolds,”  1961. [Online].  Avail&
able: https://api.semanticscholar.org/CorpusID:118959999

[BH99] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curva-
ture, vol. 319. in Grundlehren der mathematischen Wissenschaften, vol.
319. Springer, 1999. doi: 10.1007/978-3-662-12494-9.

[Rip82] E. Rips, “Subgroups of small cancellation groups,” Bulletin of the London
Mathematical Society, vol. 14, pp. 45–47, 1982, doi: 10.1112/blms/14.1.45.

[Bra99] N. Brady, “Branched Coverings of Cubical Complexes and Subgroups of
Hyperbolic Groups,” Journal of the London Mathematical Society, vol.
60, pp. 461–480, 1999, doi: 10.1112/S0024610799007644.

[LMP21] C. Llosa Isenrich, B. Martelli, and P. Py, “Hyperbolic groups con&
taining subgroups of type \mathcal{F}_3 but not \mathcal{F}_4”,
arXiv:2112.06531, 2021.

[LP22] C. Llosa Isenrich and P. Py, “Subgroups of hyperbolic groups, finiteness
properties and complex hyperbolic lattices,” arXiv:2204.05788, 2022.

[RS82] C. P. Rourke and B. J. Sanderson, Introduction to Piecewise-linear
Topology. in Ergebnisse der Mathematik und ihrer Grenzgebiete.
Springer&Verlag, 1982. [Online].  Available: https://books.google.it/books?
id=AoEpAQAAMAAJ

[BB97] M. Bestvina and N. Brady, “Morse theory and finiteness properties of
groups,” Inventiones mathematicae, vol. 129, pp. 445–470, 1997.

[JNW19] K. Jankiewicz, S. Norin, and D. T. Wise, “Virtually fibering right&angled
Coxeter groups,” Journal of the Institute of Mathematics of Jussieu, vol.
20, pp. 957–987, 2019, doi: 10.1017/s1474748019000422.

[IMM22] G. Italiano, B. Martelli, and M. Migliorini, “Hyperbolic 5&manifolds that
fiber over 𝑆1”, Inventiones mathematicae, vol. 231, pp. 1–38, 2022.

http://arxiv.org/abs/1610.02592
https://api.semanticscholar.org/CorpusID:118959999
https://doi.org/10.1007/978-3-662-12494-9
https://doi.org/10.1112/blms/14.1.45
https://doi.org/10.1112/S0024610799007644
https://books.google.it/books?id=AoEpAQAAMAAJ
https://books.google.it/books?id=AoEpAQAAMAAJ
https://doi.org/10.1017/s1474748019000422

	Lecture 1
	Introduction
	Fibrations
	The hyperbolic space
	Hyperbolic manifolds
	Isometries of ℍn

	Lecture 2
	Hyperbolic surfaces
	Hyperbolic 3-manifolds

	Lecture 3
	Higher dimension

	Lecture 4
	Finiteness properties
	Hyperbolic groups

	Lecture 5
	Bestvina-Brady Morse Theory
	Right-angled Coxeter groups and polytopes

	Lecture 6
	The Löbell construction
	States
	Moves

	References

